Dans la deuxième colonne de ce tableau, une moyenne mobile de l'ordre 5 est affichée, fournissant une estimation du cycle tendanciel. La première valeur dans cette colonne est la moyenne des cinq premières observations (1989-1993), la deuxième valeur dans la colonne 5-MA est la moyenne des valeurs 1990-1994 et ainsi de suite. Chaque valeur dans la colonne 5-MA est la moyenne des observations sur la période quinquennale centrée sur l'année correspondante. Il n'y a aucune valeur pour les deux premières années ou les deux dernières années parce que nous n'avons pas deux observations de part et d'autre. Dans la formule ci-dessus, la colonne 5-MA contient les valeurs de hat avec k2. Pour voir à quoi ressemble l'estimation du cycle tendanciel, nous la traçons avec les données originales de la figure 6.7. Parcelle 40 elecsales, principale QuotResidential électricité salesquot, ylab quotGWhquot. Notez comment la tendance (en rouge) est plus lisse que les données d'origine et capture le mouvement principal de la série chronologique sans toutes les fluctuations mineures. La méthode de la moyenne mobile ne permet pas d'estimer T où t est proche des extrémités de la série, de sorte que la ligne rouge ne s'étend pas aux bords du graphe de part et d'autre. Plus tard, nous utiliserons des méthodes plus sophistiquées d'estimation du cycle tendanciel qui permettent des estimations près des points finaux. L'ordre de la moyenne mobile détermine la finesse de l'estimation du cycle tendanciel. En général, un ordre plus grand signifie une courbe plus lisse. Le graphique suivant montre l'effet de la modification de l'ordre de la moyenne mobile pour les données sur les ventes résidentielles d'électricité. Les moyennes mobiles simples comme celles-ci sont ordinairement d'ordre impair (par exemple 3, 5, 7, etc.). C'est ainsi qu'elles sont symétriques: dans une moyenne mobile d'ordre m2k1, il y a k observations antérieures, k observations ultérieures et l'observation du milieu Qui sont moyennés. Mais si m était pair, il ne serait plus symétrique. Moyennes mobiles des moyennes mobiles Il est possible d'appliquer une moyenne mobile à une moyenne mobile. Une raison de faire ceci est de faire une moyenne mobile d'ordre pair symétrique. Par exemple, nous pourrions prendre une moyenne mobile de l'ordre 4, puis appliquer une autre moyenne mobile de l'ordre 2 aux résultats. Dans le tableau 6.2, cela a été fait pour les premières années de la production trimestrielle australienne de bière. Bière2 lt - fenêtre 40 ausbeer, début 1992 41 ma4 ltm 40 bière2, ordre 4. centre FALSE 41 ma2x4 ltm 40 bière2, ordre 4. centre VRAI 41 La notation 2x4-MA dans la dernière colonne signifie un 4-MA Suivi d'un 2-MA. Les valeurs de la dernière colonne sont obtenues en prenant une moyenne mobile de l'ordre 2 des valeurs de la colonne précédente. Par exemple, les deux premières valeurs dans la colonne 4-MA sont 451,2 (443410420532) 4 et 448,8 (410420532433) 4. La première valeur dans la colonne 2 x 4-MA est la moyenne de ces deux: 450,0 (451,2448,8) 2. Quand un 2-MA suit une moyenne mobile d'ordre pair (comme 4), il est appelé une moyenne mobile centrée de l'ordre 4. C'est parce que les résultats sont maintenant symétriques. Pour voir que c'est le cas, on peut écrire le 2x4-MA de la façon suivante: begin hat amp frac Bigfrac (y y y y) frac (y y y y) Big frac fray frac14y frac14y frac14y frac18y. End C'est maintenant une moyenne pondérée des observations, mais elle est symétrique. D'autres combinaisons de moyennes mobiles sont également possibles. Par exemple, on utilise souvent une MA 3 x 3, qui consiste en une moyenne mobile d'ordre 3 suivie d'une autre moyenne mobile d'ordre 3. En général, un ordre pair MA doit être suivi d'un ordre pair MA pour le rendre symétrique. De même, un ordre impair MA doit être suivi d'un ordre impair MA. Estimation du cycle tendanciel avec les données saisonnières L'utilisation la plus courante des moyennes mobiles centrées consiste à estimer le cycle tendanciel à partir des données saisonnières. Considérons le cas 2 x 4-MA: frac fray frac14y frac14y frac14y frac18y. Lorsqu'il est appliqué aux données trimestrielles, chaque trimestre de l'année reçoit le même poids que le premier et le dernier termes s'appliquent au même trimestre en années consécutives. Par conséquent, les variations saisonnières seront moyennées et les valeurs résultantes du chapeau auront peu ou pas de variation saisonnière restante. On obtiendrait un effet analogue en utilisant un mélange 2 fois 8-MA ou 2 fois 12-MA. En général, une m-MA de 2 x m est équivalente à une moyenne mobile pondérée d'ordre m1 avec toutes les observations pesant 1m sauf pour le premier et le dernier termes qui prennent des poids 1 (2m). Donc, si la période saisonnière est pair et d'ordre m, utilisez une m-MA 2 fois pour estimer le cycle-tendance. Si la période saisonnière est impaire et d'ordre m, utilisez un m-MA pour estimer le cycle de tendance. En particulier, un 2 x 12-MA peut être utilisé pour estimer le cycle tendanciel des données mensuelles et un 7-MA peut être utilisé pour estimer le cycle tendanciel des données quotidiennes. D'autres choix pour l'ordre de la MA entraîneront généralement des estimations du cycle de tendance étant contaminées par la saisonnalité dans les données. Exemple 6.2 Fabrication de matériel électrique La figure 6.9 montre une application de 2 x 12 mA appliquée à l'indice des ordres d'équipement électrique. Notez que la ligne lisse ne montre pas de saisonnalité, elle est presque identique au cycle de tendance illustré à la figure 6.2 qui a été estimé en utilisant une méthode beaucoup plus sophistiquée que les moyennes mobiles. Tout autre choix pour l'ordre de la moyenne mobile (à l'exception de 24, 36, etc.) aurait donné une ligne lisse qui montre certaines fluctuations saisonnières. Parcelle 40 elecequip, ylab QuotNouvelles commandes index. Col quotgrayquot, main Quot 41, 40 ma 40 elecequip, commande 12 41. col quotredquot 41 Moyennes mobiles pondérées Les combinaisons de moyennes mobiles se traduisent par des moyennes mobiles pondérées. Par exemple, la 2x4-MA discutée ci-dessus est équivalente à une pondérée 5-MA avec les poids donnés par frac, frac, frac, frac, frac. En général, un m-MA pondéré peut être écrit comme chapeau t somme k aj y, où k (m-1) 2 et les poids sont donnés par a, dots, ak. Il est important que les poids totalisent à un et qu'ils soient symétriques de sorte que aj a. Le m-MA simple est un cas particulier où tous les poids sont égaux à 1m. Un avantage majeur des moyennes mobiles pondérées est qu'elles donnent une estimation plus souple du cycle tendanciel. Au lieu des observations entrant et sortant du calcul à pleine masse, leurs poids sont augmentés lentement puis diminués lentement, ce qui donne une courbe plus lisse. Certains ensembles spécifiques de poids sont largement utilisés. Certaines d'entre elles sont données au tableau 6.3.Quelles sont les relations et la différence entre les séries temporelles et la régression Pour les modèles et les hypothèses. Est-il correct que les modèles de régression supposent l'indépendance entre les variables de sortie pour différentes valeurs de la variable d'entrée, tandis que le modèle de série chronologique ne fait pas? Quelles sont quelques autres différences Il existe un certain nombre d'approches à l'analyse des séries chronologiques, La méthode de régression et la méthode Box-Jenkins (1976) ou ARIMA (AutoRegressive Integrated Moving Average). Ce document introduit la méthode de régression. Je considère la méthode de régression très supérieure à ARIMA pour trois raisons principales, je ne comprends pas très bien ce que la méthode de régression pour les séries chronologiques est sur le site, et comment il est différent de la méthode Box-Jenkins ou ARIMA. J'apprécie que quelqu'un puisse donner un aperçu de ces questions. Merci et salutations Je pense vraiment que c'est une bonne question et mérite une réponse. Le lien fourni est écrit par un psychologue qui prétend que certains home-brew méthode est une meilleure façon de faire des séries chronologiques analyse que Box-Jenkins. J'espère que ma tentative de réponse encouragera les autres, qui connaissent mieux les séries chronologiques, à contribuer. De son introduction, il semble que Darlington est champion de l'approche de juste montage d'un modèle AR par les moindres carrés. C'est-à-dire que si vous voulez adapter le modèle zt alpha1 z cdots alphak z varepsilont à la série temporelle zt, vous pouvez simplement régresser la série zt sur la série avec lag 1, lag 2, et ainsi de suite jusqu'à lag k, en utilisant un Régression multiple ordinaire. Cela est certainement permis dans R, son même une option dans la fonction ar. Je l'ai testé dehors, et il tend à donner des réponses semblables à la méthode par défaut pour adapter un modèle d'AR dans R. Il préconise également la régression de zt sur des choses comme t ou des puissances de t pour trouver des tendances. Encore une fois, c'est absolument parfait. Beaucoup de livres de séries chronologiques parlent de cela, par exemple Shumway-Stoffer et Cowpertwait-Metcalfe. En règle générale, une analyse de séries chronologiques peut se dérouler comme suit: vous trouvez une tendance, retirez-la, puis ajustez un modèle aux résidus. Mais il semble aussi qu'il préconise un ajustement excessif, puis en utilisant la réduction de l'erreur quadratique moyenne entre les séries ajustées et les données comme preuve que sa méthode est meilleure. Par exemple: Je sens que les corrélogrammes sont maintenant obsolètes. Leur but principal était de permettre aux travailleurs de deviner quels modèles s'adapteraient mieux aux données, mais la vitesse des ordinateurs modernes (au moins dans la régression si ce n'est dans le modèle de montage en série) permet à un travailleur de simplement ajuster plusieurs modèles et de voir exactement comment Chacune correspond à l'erreur quadratique moyenne. La question de la capitalisation sur le hasard n'est pas pertinente pour ce choix, puisque les deux méthodes sont également sensibles à ce problème. Ce n'est pas une bonne idée parce que le test d'un modèle est censé être à quel point il peut prévoir, et non pas comment il correspond aux données existantes. Dans ses trois exemples, il utilise l'erreur quadratique moyenne ajustée comme critère pour la qualité de l'ajustement. Bien sûr, l'ajustement d'un modèle va faire une estimation de l'échantillon de l'erreur plus petite, donc sa prétention que ses modèles sont meilleurs parce qu'ils ont plus faible RMSE est faux. En bref, puisqu'il utilise le mauvais critère pour évaluer la qualité d'un modèle, il arrive à des conclusions erronées au sujet de la régression par rapport à ARIMA. Id parier que, s'il avait testé la capacité prédictive des modèles à la place, ARIMA serait sorti sur le dessus. Peut-être quelqu'un peut-il essayer si ils ont accès aux livres qu'il mentionne ici. Supplémentaire: pour en savoir plus sur l'idée de régression, vous voudrez peut-être consulter des livres de séries chronologiques plus anciennes qui ont été écrits avant que ARIMA devienne le plus populaire. Par exemple, Kendall, Time-Series. 1973, chapitre 11 a un chapitre entier sur cette méthode et les comparaisons à ARIMA. Autant que je sache, l'auteur n'a jamais décrit sa méthode de brassage à la maison dans une publication revue par les pairs et les références à la littérature statistique et à celles-ci semblent minimes et ses principales publications sur les sujets méthodologiques remontent aux années 70. À strictement parler, rien de tout cela prouve quoi que ce soit, mais sans suffisamment de temps ou d'expertise pour évaluer les revendications moi-même, je serais extrêmement réticents à utiliser tout cela. Ndash Gala Jul 18 13 at 11: 31Forecasting by Smoothing Techniques Ce site fait partie des objets d'apprentissage JavaScript E-Labs pour la prise de décision. Les autres JavaScript de cette série sont classés dans différents domaines d'application dans la section MENU de cette page. Une série chronologique est une séquence d'observations qui sont ordonnées dans le temps. Inherente à la collecte de données prises dans le temps est une forme de variation aléatoire. Il existe des procédés pour réduire l'annulation de l'effet dû à une variation aléatoire. Les techniques largement utilisées sont le lissage. Ces techniques, lorsqu'elles sont correctement appliquées, révèlent plus clairement les tendances sous-jacentes. Saisissez la série chronologique en ordre, en commençant par le coin supérieur gauche et le ou les paramètres, puis cliquez sur le bouton Calculer pour obtenir une prévision à une période. Les cases en blanc ne sont pas incluses dans les calculs mais les zéros sont. Lorsque vous entrez vos données pour passer d'une cellule à une cellule dans la matrice de données, utilisez la touche Tabulation et non la flèche ou entrez les touches. Caractéristiques des séries temporelles, qui pourraient être révélées en examinant son graphique. Avec les valeurs prévues, et le comportement des résidus, la prévision des conditions de modélisation. Moyennes mobiles: Les moyennes mobiles se classent parmi les techniques les plus populaires pour le prétraitement des séries chronologiques. Ils sont utilisés pour filtrer le bruit blanc aléatoire à partir des données, pour rendre la série temporelle plus lisse ou même pour mettre l'accent sur certains composants informatifs contenus dans la série chronologique. Lissage exponentiel: Il s'agit d'un schéma très populaire pour produire une série chronologique lissée. Alors que dans les moyennes mobiles les observations passées sont pondérées également, le lissage exponentiel attribue des poids exponentiellement décroissants à mesure que l'observation vieillit. En d'autres termes, les observations récentes donnent relativement plus de poids dans les prévisions que les observations plus anciennes. Double lissage exponentiel est mieux à la manipulation des tendances. Triple Exponential Smoothing est mieux à la manipulation des tendances parabole. Une moyenne mobile exponentiellement pondérée avec une constante de lissage a. Correspond approximativement à une moyenne mobile simple de longueur (c'est-à-dire période) n, où a et n sont liés par: a 2 (n1) OR n (2 - a) a. Ainsi, par exemple, une moyenne mobile exponentiellement pondérée avec une constante de lissage égale à 0,1 correspondrait approximativement à une moyenne mobile de 19 jours. Et une moyenne mobile simple de 40 jours correspondrait approximativement à une moyenne mobile exponentiellement pondérée avec une constante de lissage égale à 0,04878. Holts Linear Exponential Smoothing: Supposons que la série chronologique soit non saisonnière mais affiche la tendance. Holts méthode estime à la fois le niveau actuel et la tendance actuelle. Notons que la moyenne mobile simple est un cas particulier du lissage exponentiel en définissant la période de la moyenne mobile sur la partie entière de (2-Alpha) Alpha. Pour la plupart des données commerciales, un paramètre Alpha inférieur à 0,40 est souvent efficace. Cependant, on peut effectuer une recherche de grille de l'espace des paramètres, avec 0,1 à 0,9, avec des incréments de 0,1. Ensuite, le meilleur alpha a la plus petite erreur absolue moyenne (erreur MA). Comment comparer plusieurs méthodes de lissage: Bien qu'il existe des indicateurs numériques pour évaluer la précision de la technique de prévision, l'approche la plus répandue consiste à utiliser la comparaison visuelle de plusieurs prévisions pour évaluer leur exactitude et choisir parmi les différentes méthodes de prévision. Dans cette approche, on doit tracer (en utilisant par exemple Excel) sur le même graphe les valeurs d'origine d'une variable de série temporelle et les valeurs prédites à partir de plusieurs méthodes de prévision différentes, facilitant ainsi une comparaison visuelle. Vous pouvez utiliser les prévisions passées par Smoothing Techniques JavaScript pour obtenir les valeurs de prévisions antérieures basées sur des techniques de lissage qui n'utilisent qu'un seul paramètre. Holt et Winters utilisent deux et trois paramètres, respectivement, donc il n'est pas facile de sélectionner les valeurs optimales, voire presque optimales par essai et les erreurs pour les paramètres. Le lissage exponentiel simple met l'accent sur la perspective à courte portée qu'il définit le niveau à la dernière observation et est basé sur la condition qu'il n'y a pas de tendance. La régression linéaire, qui correspond à une ligne de moindres carrés aux données historiques (ou aux données historiques transformées), représente la longue portée, conditionnée par la tendance de base. Le lissage linéaire linéaire de Holts capture des informations sur la tendance récente. Les paramètres dans le modèle de Holts sont les niveaux-paramètres qui devraient être diminués quand la quantité de variation de données est grande, et les tendances-paramètre devraient être augmentés si la direction de tendance récente est soutenue par le causal certains facteurs. Prévision à court terme: Notez que chaque JavaScript sur cette page fournit une prévision à un pas. Obtenir une prévision en deux étapes. Ajoutez simplement la valeur prévue à la fin de vos données chronologiques et cliquez sur le même bouton Calculer. Vous pouvez répéter ce processus quelques fois afin d'obtenir les prévisions à court terme nécessaires.
No comments:
Post a Comment