Moyenne mobile Cet exemple vous enseigne comment calculer la moyenne mobile d'une série temporelle dans Excel. Une moyenne mobile est utilisée pour lisser les irrégularités (pics et vallées) pour reconnaître facilement les tendances. 1. Tout d'abord, jetez un oeil à notre série chronologique. 2. Sous l'onglet Données, cliquez sur Analyse des données. Remarque: ne trouve pas le bouton Analyse des données Cliquez ici pour charger le complément Analysis ToolPak. 3. Sélectionnez Moyenne mobile et cliquez sur OK. 4. Cliquez dans la zone Plage d'entrée et sélectionnez la plage B2: M2. 5. Cliquez dans la zone Intervalle et tapez 6. 6. Cliquez dans la zone Plage de sortie et sélectionnez la cellule B3. 8. Tracez un graphique de ces valeurs. Explication: parce que nous définissons l'intervalle sur 6, la moyenne mobile est la moyenne des 5 points de données précédents et le point de données actuel. En conséquence, les crêtes et les vallées sont lissées. Le graphique montre une tendance à la hausse. Excel ne peut pas calculer la moyenne mobile pour les 5 premiers points de données car il n'y a pas assez de points de données antérieurs. 9. Répétez les étapes 2 à 8 pour l'intervalle 2 et l'intervalle 4. Conclusion: Plus l'intervalle est grand, plus les sommets et les vallées sont lissés. Plus l'intervalle est petit, plus les moyennes mobiles sont proches des points de données réels. Existe-t-il un moyen simple d'appliquer la formule de ligne de tendance d'un graphique à une valeur X donnée dans Excel Par exemple, je veux obtenir la valeur Y pour un Donnée X 2 006,00. Ive déjà pris la formule et retypée il soit: -0.000000000008X3 - 0.00000001X2 0.0003X - 0.0029 Je suis continuellement faire des ajustements à la ligne de tendance en ajoutant plus de données, et ne veulent pas retaper la formule à chaque fois. Je ne veux pas voter en bas de la formule vline réponse vba, mais je tiens à dire que LINEST est beaucoup plus facile que l'approche VBA, car il utilise des calculs directement, pas une formule qui peut ne pas être formaté pour une précision suffisante (voir WWhalley39s commentaires précédents: Utilisez un format numérique de 0.000000000000E00 pour améliorer la précision de la formule de la ligne de tendance). Ndash Jon Peltier Nov 27 12 at 21:40 J'ai trouvé une solution qui fonctionne pour tous les types de lignes de tendance (sauf pour la moyenne mobile bien sûr). Vous pouvez définir la précision du Datalabel en fonction de vos besoins. Choisir la meilleure ligne de tendance pour vos données Lorsque vous souhaitez ajouter une ligne de tendance à un graphique dans Microsoft Graph, vous pouvez choisir l'un des six types de régression de tendance. Le type de données que vous avez détermine le type de ligne de tendance à utiliser. Fiabilité de la ligne de tendance Une ligne de tendance est la plus fiable lorsque sa valeur R-carré est égale ou proche de 1. Lorsque vous ajustez une ligne de tendance à vos données, Graph calcule automatiquement sa valeur R-carré. Si vous le souhaitez, vous pouvez afficher cette valeur sur votre graphique. Une ligne de tendance linéaire est une ligne droite optimale qui est utilisée avec des ensembles de données linéaires simples. Vos données sont linéaires si le motif dans ses points de données ressemble à une ligne. Une ligne de tendance linéaire indique généralement que quelque chose augmente ou diminue à un rythme régulier. Dans l'exemple suivant, une ligne de tendance linéaire montre clairement que les ventes de réfrigérateurs ont augmenté constamment sur une période de 13 ans. Notez que la valeur R-carré est 0.9036, ce qui est un bon ajustement de la ligne aux données. Une ligne de tendance logarithmique est une ligne courbe optimale qui est la plus utile lorsque le taux de changement dans les données augmente ou diminue rapidement, puis se stabilise. Une ligne de tendance logarithmique peut utiliser des valeurs négatives et / ou positives. L'exemple suivant utilise une ligne de tendance logarithmique pour illustrer la croissance prédite de la population d'animaux dans une zone d'espace fixe, où la population s'est stabilisée en espace pour les animaux. Notez que la valeur R-carré est 0.9407, ce qui est un ajustement relativement bon de la ligne aux données. Une ligne de tendance polynomiale est une ligne courbe qui est utilisée lorsque les données fluctuent. Il est utile, par exemple, d'analyser les gains et les pertes sur un grand ensemble de données. L'ordre du polynôme peut être déterminé par le nombre de fluctuations des données ou par le nombre de virages (collines et vallées) apparaissant dans la courbe. Une ligne de tendance polynomiale Ordre 2 n'a généralement qu'une seule colline ou une seule vallée. L'ordre 3 a généralement une ou deux collines ou vallées. Ordre 4 a généralement jusqu'à trois. L'exemple suivant montre une ligne de tendance polynomiale Ordre 2 (une colline) pour illustrer la relation entre la vitesse et la consommation d'essence. Notez que la valeur R-carré est 0.9474, ce qui est un bon ajustement de la ligne aux données. Une ligne de tendance de puissance est une ligne courbe qui est mieux utilisée avec des ensembles de données qui comparent les mesures qui augmentent à un taux spécifique, par exemple, l'accélération d'une voiture de course à intervalles d'une seconde. Vous ne pouvez pas créer une ligne de tendance de puissance si vos données contiennent des valeurs nulles ou négatives. Dans l'exemple suivant, les données d'accélération sont représentées en traçant la distance en mètres par secondes. La ligne de tendance de puissance démontre clairement l'accélération croissante. Notez que la valeur R-squared est 0,9923, ce qui est un ajustement presque parfait de la ligne aux données. Une ligne de tendance exponentielle est une ligne courbe qui est plus utile lorsque les valeurs de données augmentent ou diminuent à des taux de plus en plus élevés. Vous ne pouvez pas créer une ligne de tendance exponentielle si vos données contiennent des valeurs nulles ou négatives. Dans l'exemple suivant, une ligne de tendance exponentielle est utilisée pour illustrer la quantité décroissante de carbone 14 dans un objet à mesure qu'il vieillit. Notez que la valeur R-squared est 1, ce qui signifie que la ligne correspond parfaitement aux données. Une ligne de tendance moyenne mobile lisse les fluctuations des données pour montrer un modèle ou une tendance plus clairement. Une ligne de tendance moyenne mobile utilise un nombre spécifique de points de données (définis par l'option Période), les met en moyenne et utilise la valeur moyenne comme un point dans la ligne de tendance. Si Période est défini à 2, par exemple, la moyenne des deux premiers points de données est utilisée comme premier point dans la ligne de tendance moyenne mobile. La moyenne des deuxième et troisième points de données est utilisée comme deuxième point dans la ligne de tendance, et ainsi de suite. Dans l'exemple suivant, une ligne de tendance moyenne mobile indique le nombre de logements vendus sur une période de 26 semaines.
No comments:
Post a Comment